
ScaleText: The Design of a Scalable, Adaptable and
User-Friendly Document System

for Similarity Searches
Digging for Nuggets of Wisdom in Text

Jan Rygl1, Petr Sojka2, Michal Růžička2, and Radim Řehůřek1

1 RaRe Technologies, {jimmy,radim}@rare-technologies.com
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

sojka@fi.muni.cz, ORCID: 0000-0002-5768-4007
and mruzicka@mail.muni.cz, ORCID: 0000-0001-5547-8720

Abstract. This paper describes the design of a new ScaleText system
aimed at scalable semantic indexing of heterogeneous textual corpora. We
discuss the design decisions that lead to a modular system architecture for
indexing and searching using semantic vectors of document segments –
nuggets of wisdom. The prototype system implementation is evaluated
by applying Latent Semantic Indexing (LSI) on the Enron corpus. And
the Bpref measure is used to automate comparing the performance of
different algorithms and system configurations.

Key words: ScaleText, vector space modelling, Latent Semantic Indexing,
LSI, machine learning, scalable search, search system design, text mining

1 Introduction

Today’s growing information overload dictates the need for effective semantic
searching in custom datasets, such as emails, texts in corporation information
systems and knowledge bases, Wikipedia, web browsing history, and in per-
sonal information space. Such a search service gives working professionals a
competitive advantage, and allows them to have relevant information at their
fingertips.

Content semantics indexing is the king for document indexing and filtering
large volumes of textual data. Its relevance search goes beyond string, word or
phrase indexing.

In this paper we describe the design of ScaleText, a system that aims to
meet the demands of the working professional’s information search needs. The
design imperatives are:

Scalability: with the size of today’s document collections, efficiency is a
primary concern, allowing low latency responses.

Aleš Horák, Pavel Rychlý, Adam Rambousek (Eds.): Proceedings of Recent Advances in Slavonic Natural
Language Processing, RASLAN 2016, pp. 79–87, 2016. © Tribun EU 2016



80 J. Rygl et al.

Adaptability: since no size fits all, the system should be easily customizable
and tunable for any given application purpose.

Relevance: search precision could be improved by clever semantic representa-
tions of the meanings of indexed texts. It is both necessary and desirable to
find highly relevant document chunks.

Implementation Clarity: the implementation should be written with ease of
maintenance in mind.

Simplicity: keep it simple stupid, yet provide the functionality needed.

Having SARICS in mind during the design phase lays the foundation for a
system capable of meeting the big data needs of many enterprises.

This paper is structured as follows: Section 2 evaluates state-of-the-art
systems and approaches. In Sections 3 and 4 the top-level system architecture
is described, with processing pipelines for indexing and searching, the main
components of ScaleText. Section 5 describes automatic evaluation framework
for human-unassisted comparison of implementations and configurations of
our prototype system on the ground truth of Enron corpus. We conclude with
an overview of our contributions along with our work plans for the future
in Section 6.

2 The State of the Art in Semantic Document Processing

There has been a noticeable drift away from an emphasis on keyword-based
statistics such as term frequency–inverse document frequency (TfIdf) weight-
ing to semantic-based methods such as Latent Semantic Indexing LSI [4] or se-
mantic vectors learned by deep learning [7]. Improving the relevance of search
results and scalability are also current design imperatives, given that seman-
tic searches are often performed during web browsing [10] and even at each
keystroke as is the case with Google Instant.

Approaches to Semantics The key to better relevance is some sort of sense
representation of words, phrases, sentences, paragraphs and documents. We
can have either (i) a discrete representation of meaning, which can be based
on knowledge-based representations such as WordNet, BabelNet, Freebase or
Wikipedia, or (ii) a smooth representation based on a distributional hypothesis,
e.g. representing meanings as word, phrase, sentence, . . . embeddings [7] which
are learned from the language used in big corpora by unsupervised, deep
learning approaches, or by topic modeling [1].

Existing Frameworks and Systems There are already frameworks that support
building smooth semantic models such as Gensim [8]. One system that builds
on semantic document models is Kvasir [10] which supports instant searching
in the web browser, thereby stressing the need for speed and relevance.



ScaleText: Digging for Nuggets of Wisdom in Text 81

Input
Document

DataReader
(e.g. pdf2text)

Tokenizer
(e.g. NLTK
tokenizer)

Segment2Vec
SemanticModeler

(e.g. TFIDF, LSI, deep
learning, doc2vec)

Segmenter
(e.g. paragraph /

logical part
[table, formula]

segmenter)

Index of Vectors

document as a file
(e-mail, PDF, . . . ),

URL, . . .
document as

plain text

document as
a token list

segments in
all documents

document as
a segment list

document as
a list of points
representing

segments

Fig. 1: Data flow diagram of document indexing in ScaleText

As there are still many open questions to be clarified in text semantics rep-
resentation, our ScaleText system architecture has been designed to be modu-
lar, based on a set of components with a defined purpose and communication
interfaces. Different module implementations give the system extra flexibility.
Indexing and searching, as main components of ScaleText, are outlined in the
following sections.

3 Indexing: Storing Document Chunks as Points in Vector
Space

ScaleText introduces a flexible data processing pipeline for document indexing,
leading to semantic document representations in a vector space. The overall
scheme of document transformations in the indexing workflow is depicted in
Figure 1.

In the course of our SARICS imperatives, ScaleText is flexible what format
of document is accepted on its input. Raw input documents are read from



82 J. Rygl et al.

their primary resources outside ScaleText by the DataReader module. Different
implementations of the DataReader component can be used to provide data
from arbitrary data sources such as log files, data files, binary streams, etc. and
in various formats such as plain text documents, PDF documents, emails with
attachments. Every raw input document is transformed into plain full text, and
given a unique document identifier (doc_id). All data are made persistent in
the Storage module.

The Tokenizer module processes plain text with a standard linguistic
pipeline: (i) tokenization, part of speech tagging, and (ii) phrase detection
all take place at this stage. The next stage in the document processing is
segmentation in the Segmenter module. Plain text is cut into a list of small,
meaningful segments, called nuggets. Nuggets usually take the form of a triplet
consisting of a document identifier (doc_id), a segment identifier (seg_id)
and a list of tokens (tokens) comprising a paragraph or equation or another
logic element with semantic meaning, extracted from the document plain text.
Segmenting a document into nuggets is one of the key ScaleText design ideas
that facilitates the semantic indexing of textual data.

Having nuggets of all documents enables us to build a semantic model of an
indexed dataset. To represent the semantics of the documents we can use dis-
tributional semantics modeling, topic modeling methods, deeply learned rep-
resentations or LSI. The semantic document model can be rebuilt and retrained
at any time from the currently indexed nuggets. In our default implementation,
the TfIdf (Term frequency–Inverse document frequency) matrix is computed
from the tokens of all nuggets, followed by LSI, which results in the projection
of nuggets into a latent semantic subspace.

Thus, every document is represented as a list of semantic vectors of nuggets.
Both the model and the vectors are persistently stored in a database and used
during the search.

4 Document Similarity Search: Digging for Nuggets of
Wisdom

The indexed dataset is used for similarity searching. To pursue the gold mining
metaphor, gold nuggets are washed with different gold mining techniques. The
overall schema of the search procedure is depicted in Figure 2.

Query representation as nuggets The query document is segmented into
nuggets.

Querying and scoring We build a set of hit lists between the query and all
database nuggets. The hit lists are in the form of triplets of doc_id and seg_id,
referring to a database nugget, and a score – a numerical represention of
its semantic similarity to the query nugget. Cosine similarity is the implicit
similarity measure.



ScaleText: Digging for Nuggets of Wisdom in Text 83

Query Document Indexing Pipeline

doc1

doc2

doc3

Document Nuggets

nugget1
nugget2

nugget3

Query Nuggets

Similarity Search

Candidate Nuggets

1
3

2

Results as Sorted Nuggets

Ranker

1

2

3

Results as Sorted Documents

query document
as a file

query as
semantic vectors

q · K semantic
vectors q = 3, K = 2

k = 3

k = 3

Fig. 2: Data flow diagram of document similarity search in ScaleText. q is the
number of query nuggets, K is the number of best nugget candidates for each
query nugget, and k is the number of desired final results



84 J. Rygl et al.

Hit merging and sorting strategies The final step of the search procedure is
merging and sorting the nuggets found.

The implicit strategy sorts the nuggets by the value of the similarity score
only. More advanced strategies can boost scores of the nuggets, for example,
based on the number of matching nuggets belonging to the same document. In
this case, the score of document nuggets also depends on the overall coverage
of the document by the query nuggets.

Document-based result sorting When users prefer whole documents to indi-
vidual nuggets, the results can be the documents sorted by an aggregation of
matched nugget scores per document. There are various aggregation possibili-
ties, such as arithmetic mean, maximum, or sum normalized by the document
length.

Scoring and sorting depend on data and application goals but ScaleText pro-
vides a flexible architecture to achieve them: a separate Ranker module for re-
ordering the results – found nuggets – allows a suitable results sorting strat-
egy to be implemented, tailored to a particular user’s needs. The variability of
nugget mining strategies that ScaleText design offers provides an opportunity
to fine-tune the system with respect to the needs and specifics of a particular
project and dataset.

5 Automatic Evaluation Framework for System Modules

As Figures 1 and 2 show, different implementations of the modules in ScaleText
data processing workflow can be used. It is necessary to evaluate the system
performance of different configurations. In order to achieve a quick verification
of ScaleText design ideas and rapid prototyping, we needed a fully automatic,
fast and human-unassisted evaluation procedure to compare exchangeable
modules in the architecture. We consequently built a ScaleText prototype on
top of existing libraries such as Gensim [8] and Spotify Annoy3, using agile
development techniques.

To measure and compare performance of the system modules we needed a
dataset with ground truth for a set of queries.

Evaluation dataset We used TREC 2010 Legal track version [3, chapter 2] of the
Enron dataset [9]: 455,449 messages plus 230,143 attachments form the 685,592
documents of the TREC 2010 Legal Track collection.

Ground truth dataset To build our ground truth we exploited the availability
of 2,720 documents out of the Enron dataset which had an assessed relevance to
the Learning task [3, chapter 4.1] that consisted of 8 topics. Every ground truth
document was labeled as relevant or irrelevant to each of the topics.

3 https://github.com/spotify/annoy



ScaleText: Digging for Nuggets of Wisdom in Text 85

Query dataset ScaleText uses whole documents as queries for similarity
searches. For automatic prototype evaluation we used our ground truth doc-
uments, i.e. documents with known relevance to the topics, as the queries.

Bpref@k evaluation metric We used the Bpref measure to evaluate the instance
performance of the ScaleText system. It is a cheap and rigorous measure of
the performance effect of module changes which does not need to assume the
completeness of the relevance judgments in the evaluation dataset.

However, the original Bpref proposal [2] was found [6] not to correspond
to the actual trac_eval4 implementation of Bpref. Furthermore, the trac_eval
implementation still does not work correctly on result lists where the number
k of inspected results (Bref@k) is lower than the number of relevant results by
ground truth. To cope with this we finally implemented Bpref@k as follows:

Bpref@k =
1

min(R, k) ∑
r

(
1− min (number of n ranked higher than r, R)

min(N, R)

)
,

where R is the number of documents relevant to the topic, N is the number of
documents irrelevant to the topic, k is the maximal number of inspected results,
and “number of n ranked higher than r” is the number of irrelevant documents
(according to the judgment) ranked higher than the relevant (according to the
judgment) document r that is being processed in the step.

Evaluation procedure For a given query, every document in the result list
is automatically classified as (i) relevant, if the document is in our ground
truth and the relevance assessment for the topic is the same as for the query
document, (ii) irrelevant, if it is in our ground truth but has a different relevance
assessment from the query, (iii) unknown otherwise.

Table 1 provides examples of the evaluations of different ScaleText config-
urations and ranking strategies. It is important to note that unsupervised ma-
chine learning techniques have been used, i.e. Enron seed set [2] was not used to
train the model on labeled data. This evaluation procedure is useful for a fast,
automatic, human-unassisted evaluation of system configuration effectiveness,
as it shows the differences among configurations. E.g., from the Bpref@100 val-
ues it is clear that setting the number of LSI features as high as 500 already
degrades performance. Also, TfIdf+LSI configuration gives significantly better
results than using only TfIdf weighting.

6 Conclusion and Future Work

We have designed a ScaleText system for scalable semantic searching and
indexing. The system has been designed with SARICS (Scalability, Adaptability,
Relevance, Implementation, Clarity and Simplicity) in mind. Its architecture

4 http://trec.nist.gov/trec_eval/



86 J. Rygl et al.

Table 1: ScaleText prototype evaluation on the Enron dataset via Bpref. The
single metric value is the average of Bpref@100 over all the queries

document model document ranking strategy #features avg. Bpref@100

TfIdf maximum nugget score 100 0.0451
TfIdf+LSI maximum nugget score 50 0.0460
TfIdf+LSI maximum nugget score 100 0.0565
TfIdf+LSI maximum nugget score 500 0.0358
TfIdf average nugget score 100 0.0451
TfIdf+LSI average nugget score 50 0.0460
TfIdf+LSI average nugget score 100 0.0548
TfIdf+LSI average nugget score 500 0.0358
TfIdf normalized sum of nugget scores 100 0.0451
TfIdf+LSI normalized sum of nugget scores 50 0.0460
TfIdf+LSI normalized sum of nugget scores 100 0.0534
TfIdf+LSI normalized sum of nugget scores 500 0.0358

allows for massive parallelization of both crucial operations – indexing and
searching with low latency, yet allowing easy maintenance and pluggable
modules for semantic indexing (LSI, distributive semantics) and searching
(k-NN search, new techniques for searching in feature vector spaces).

We have implemented ScaleText in Python for easy prototyping and mainte-
nance. Semantic modeling algorithms use a high-performance implementation
of Gensim.

We have designed a mechanism for evaluating pluggable system modules.
The ground truth Enron database with Bpref metric has allowed us to quickly
and automatically measure the performance of the system and compare the
module effectiveness of different system configurations.

In subsequent work we will evaluate different vector space representations
of documents and prepare a methodology for configuring ScaleText to meet
document system search demands of both the research community and indus-
try.

We have several research questions in our sights:

– Word disambiguation in context: current methods represent a word in the
vector space as the centroid of its different meanings. We want to evaluate
an approach based on random walks through texts so as to distinguish the
representation of words in context.

– Compositionality of segment representation: semantic vectors represent-
ing the meaning of segments should reflect compositionality of meaning of
its parts, e.g. words, phrases and sentences.

– Representation of narrativity: we may represent narrative text qualities [5]
as a trajectory of words or nuggets in vector space, e.g. document represen-
tation may be a trajectory instead of a point.



ScaleText: Digging for Nuggets of Wisdom in Text 87

Acknowledgments. The authors thank all proofreaders for their detailed
commentary and suggestions for improvements. Funding by TA ČR Omega
grant TD03000295 is gratefully acknowledged.

References

1. Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (Apr 2012),
http://doi.acm.org/10.1145/2133806.2133826

2. Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information. In:
Proc. of the 27th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. pp. 25–32. SIGIR ’04, ACM, New York, NY,
USA (2004), http://doi.acm.org/10.1145/1008992.1009000

3. Cormack, G.V., Grossman, M.R., Hedin, B., Oard, D.W.: Overview of the TREC 2010
legal track. In: Proc. 19th Text REtrieval Conference. pp. 1–45. National Institute of
Standards and Technology, Gaitherburg, MD (2010), http://trec.nist.gov/pubs/
trec19/papers/LEGAL10.OVERVIEW.pdf

4. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:
Indexing by latent semantic analysis. Journal of the American Society of Information
Science 41(6), 391–407 (1990)

5. Hoenkamp, E., Bruza, P., Song, D., Huang, Q.: An Effective Approach to Verbose
Queries Using a Limited Dependencies Language Model. In: Azzopardi, L., Kazai,
G., Robertson, S.E., Rüger, S.M., Shokouhi, M., Song, D., Yilmaz, E. (eds.) ICTIR.
Lecture Notes in Computer Science, vol. 5766, pp. 116–127. Springer (2009), http:
//dx.doi.org/10.1007/978-3-642-04417-5_11

6. Kdorff: Bpreftreceval2006 (2007), http://icb.med.cornell.edu/wiki/index.php/
BPrefTrecEval2006, Accessed: 2016-10-29

7. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations
of words and phrases and their compositionality (2013), http://arxiv.org/abs/
1310.4546, arXiv:1310.4546

8. Řehůřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Corpora.
In: Proceedings of LREC 2010 workshop New Challenges for NLP Frameworks.
pp. 45–50. Valletta, Malta (2010), software available at http://nlp.fi.muni.cz/
projekty/gensim

9. TREC version of EDRM Enron Dataset, version 2, Accessed: 2016-10-29, http:
//www.edrm.net/resources/data-sets/edrm-enron-email-data-set-v2

10. Wang, L., Tasoulis, S., Roos, T., Kangasharju, J.: Kvasir: Seamless integration of
latent semantic analysis-based content provision into web browsing. In: Proc. of
the 24th International Conference on World Wide Web. pp. 251–254. WWW ’15
Companion, ACM, New York, NY, USA (2015), http://doi.acm.org/10.1145/
2740908.2742825


